Adaptive optics wide-field microscopy using direct wavefront sensing.
نویسندگان
چکیده
We report a technique for measuring and correcting the wavefront aberrations introduced by a biological sample using a Shack-Hartmann wavefront sensor, a fluorescent reference source, and a deformable mirror. The reference source and sample fluorescence are at different wavelengths to separate wavefront measurement and sample imaging. The measurement and correction at one wavelength improves the resolving power at a different wavelength, enabling the structure of the sample to be resolved.
منابع مشابه
Direct wavefront sensing in adaptive optical microscopy using backscattered light.
Adaptive optics has been used to compensate the detrimental effects of aberrations in a range of high-resolution microscopes. We investigate how backscattered laser illumination can be used as the source for direct wavefront sensing using a pinhole-filtered Shack-Hartmann wavefront sensor. It is found that the sensor produces linear response to input aberrations for a given specimen. The gradie...
متن کاملImage-based calibration of a deformable mirror in wide-field microscopy.
Optical aberrations limit resolution in biological tissues, and their influence is particularly large for promising techniques such as light-sheet microscopy. In principle, image quality might be improved by adaptive optics (AO), in which aberrations are corrected by using a deformable mirror (DM). To implement AO in microscopy, one requires a method to measure wavefront aberrations, but the mo...
متن کاملAdaptive optics confocal microscopy using direct wavefront sensing.
Optical aberrations due to the inhomogeneous refractive index of tissue degrade the resolution and brightness of images in deep-tissue imaging. We introduce a confocal fluorescence microscope with adaptive optics, which can correct aberrations based on direct wavefront measurements using a Shack-Hartmann wavefront sensor with a fluorescent bead used as a point source reference beacon. The resul...
متن کاملAdaptive optics two photon microscopy with direct wavefront sensing using autofluorescent guide-stars
A fast direct wavefront sensing method for dynamic in-vivo adaptive optical two photon microscopy has demonstrated. By using the direct wavefront sensing and open loop control, the system provides high-speed wavefront measurement and correction. To measure the wavefront in the middle of a Drosophila embryo at early stages, autofluorescence from endogenous fluorophores in the yolk were used as r...
متن کاملAdaptive Optics Confocal Fluorescence Microscopy with Direct Wavefront Sensing for Brain Tissue Imaging
Recently, there has been a growing interest in deep tissue imaging for the study of neurons. Unfortunately, because of the inhomogeneous refractive index of the tissue, the aberrations degrade the resolution and brightness of the final image. In this paper, we describe an adaptive optics confocal fluorescence microscope (AOCFM) which can correct aberrations based on direct wavefront measurement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2011